Preliminary communication

A ²⁹Si, ¹³C AND ¹H NMR STUDY OF THE INTERACTION OF VARIOUS HALOTRIMETHYLSILANES AND TRIMETHYLSILYL TRIFLATE WITH DIMETHYL FORMAMIDE AND ACETONITRILE. A COMMENT ON THE NUCLEOPHILE INDUCED RACEMISATION OF HALOSILANES.

ALAN R. BASSINDALE* and TIM STOUT

Chemistry Department, The Open University, Walton Hall, Milton Keynes, MK7 6AA (Great Britain)

(Received August 19th, 1982)

Summary

The ²⁹Si, ¹³C and ¹H NMR spectra of 1/1 mixtures of Me₃SiI and Me₃SiOSO₂CF₃ with DMF in CD_2Cl_2 show signals that are consistent with the formation of Me₃SiO= $\tilde{C}H(NMe_2)X^{-}$ but not with penta- or hexa-coordinate silicon species. The spectra of a 1/1 mixture of Me₃SiBr and DMF show a rapidly exchanging, equilibrium mixture of Me₃SiO=CH(NMe₂)Br and starting materials. No strong evidence for salt formation between DMF and Me₃SiCl was obtained. The spectra of Me_3SiX (X = I, Br, Cl, OSO_2CF_3) in CD_3CN indicate that neither adduct formation nor extra coordination at silicon is significant.

There is currently considerable debate concerning the role of added nucleophiles, such as HMPT, DMF, DMSO, R₃PO and CH₃CN, in the racemisation of chiral organosilanes [1-5] and in the nucleophilic substitution at silicon [6].

Two basic mechanisms have been postulated. The most widely accepted racemisation mechanism, deduced from kinetic and conductimetric studies is that proposed by Corriu [1]. This mechanism involves extension of coordination at silicon and is shown in Scheme 1.

SCHEME 1

0022-328X/82/0000-0000/\$02.75 © 1982 Elsevier Sequoia S.A.

An alternative racemisation mechanism, involving displacement of halide by the nucleophile has been proposed by Chojnowski [2] and is shown by Scheme 2. This mechanism is also compatible with the kinetic results and is based on the isolation of ionic adducts of Me_3SiBr and HMPT [2].

SCHEME 2

Corriu [1] has reported that the mechanism in Scheme 2 is a special case for labile SiBr bonds with good nucleophiles. In a detailed conductimetric study [1] he showed that 1/1 mixtures of DMF and Me₃SiBr in CD₂Cl₂ were non-conducting and concluded that this was prima facie evidence for the formation of molecular adducts with five (or six) coordinate silicon.

We undertook a preliminary study of the interaction of Me₃SiX (X = I, Br, Cl, OSO₂CF₃) with DMF, and the weaker nucleophile CD₃CN, in CD₂Cl₂, by NMR spectroscopy. ²⁹Si NMR spectroscopy is a particularly useful probe for coordination at silicon since the chemical shift range is large and highly indicative of coordination number [7].

TABLE 1

```
NMR DATA FOR 1/1 MIXTURES OF Me<sub>3</sub>SiX (X = I, Br, Cl, OSO<sub>2</sub>CF<sub>3</sub>) AND DMF IN CD<sub>2</sub>Cl<sub>2</sub>
```

Compound(s) ^a	δ(²⁹ Si) (ppm)	δ(¹³ C) (ppm)		δ(¹ H) (ppm)		
		C=0	NMe	<i>H</i> – C = O	N—Me	
HCONMe,		162.4	31.3, 36.4	8.01	2.87, 2.94	
Me ₃ SiCl	30.5	_		_		
Me, SiCl/HCONMe,	31.05	162.3	31.2, 36.3	8.52	3.0, 3.25	
Me, SiCl/10 HCONMe,	31.37	162.4	31.3, 36.3	8.11	2.89, 2.92	
Me ₃ SiBr	26.6	_		—	_	
Me ₃ SiBr/HCONMe ₂	33.62	163.2	33.4, 38.5	8.85	3.0, 3.26	
Me ₃ SiBr/10 HCONMe ₂	42.11	162.4	31.2, 36.4	8.18	2.87, 2.871, 3.05	
Me SiI	10.6					
Me ₁ Sil/HCONMe ₂	43.94	163.0	37.1, 42.0	9.35	3.3, 3.69	
Me, SiOSO, CF,	44.27					
Me ₃ SiOSO ₂ CF ₃ /HCONMe ₂	43.99	164.5	36.8, 42.2	9.45	3.2, 3.46	
	—29.4(CD ₂ Cl ₂) —33.0(CD ₃ CN)					

 $^{
m g}$ All spectra run on Jeol FX90Q at ambient temperatures with ca 2 M solutions and with internal TMS.

The ²⁹Si, ¹³C and ¹H chemical shifts for 1/1 mixtures of Me₃SiX with DMF in CD_2Cl_2 solution are given in Table 1. We believe that the data in Table 1 are consistent with formation of I to a greater or lesser extent depending on X. As the ²⁹Si NMR signal for Me₃SiX (X = I, OSO₂CF₃) moves to high frequency an addition of equimolar quantities of DMF, reaction is taking place to give a four-coordinate Me₃SiY species bonded to a strongly electron-withdrawing group [7]. No stable five or six coordinate Me₃SiY_n (n = 2 or 3) complexes have been isolated or characterised but Yoder [8] has reported several five coordinate species (II). These serve as more than adequate models for the coordination of DMF with halosilanes. We prepared a complex II where $\mathbf{R} = \mathbf{R}' = \mathbf{M} \in [8]$ and its substantial low-frequency shifts in two solvents are reported in Table 1. Thus the high frequency shifts observed for DMF adducts are strongly indicative of four coordination at silicon. Further evidence for species I is gained from the observation that the ²⁹Si chemical shifts for Me₃SiX/DMF approach the same value of ca. δ 44 ppm, independent of the counterion for X = I, Br, OSO₂CF₃. With bromide as counterion the equilibrium lies between I and reactants but is moved towards I by addition of excess DMF.

The DMF ¹³C and ¹H resonances also shift to high frequency on the addition of Me₃SiX (X = I, Br, OSO₂CF₃) and are consistent with O-silylation, comparing closely with those obtained by Reynolds and McClelland [9] for O-protonation of DMF in aqueous solutions. From the spectroscopic data it is not possible to be unequivocal about the nature of the interaction between Me₃SiCl and DMF but the ¹H shifts to high frequency are indicative of a small equilibrium concentration of I (X = Cl).

We conclude that the ionic species I are formed for DMF and Me₃SiX (X = I, Br, OSO₂CF₃) and that the non-conductance of I (X = Br) observed by Corriu [1] is due to tight ion pairing in the relatively non polar CD_2Cl_2 .

As a probe for the possible intermediacy of species I in the racemisation of organohalosilanes, we briefly investigated the dynamic behaviour of I (X = I) with DMF and Me₃SiI. The NMR spectra of 0.5/1, 1.5/1 and 2/1 mixtures of Me₃SiI and DMF were measured, and the results given in Table 2.

When DMF is in a two-fold excess over Me_3SiI a very sharp signal is observed at δ 44 ppm, in the same position as the somewhat broadened signal for the 1/1 mixture. This confirms that the observed species cannot be $Me_3Si(DMF)_2$.

Ratio of Me ₃ SiI/DMF	δ(²⁹ Si) (ppm)	δ(¹³ C) (ppm)			δ(¹ H) (ppm)
		C=0	NMe	H-C=0	NMe
0.5/1	44.0	163.1	35.7, 40.6	9.05	3.2, 3.5
1/1	44.0	163.0	37.1, 42.0	9.35	3.3, 3.69
1.5/1	no signal				
	observed .	163.0	37.1, 42.0	9.38	3.3(d), 3.68(d)
2.0/1	10.8	163.0	37.1, 42.0	9.38	3.3, 3.68

NMR SPECTRA OF MIXTURES OF Mea Sil AND DMF. IN CD2 Cl2 WITH VARIOUS STOICHIOMETRIES

Additionally only one sharp set of ¹H and ¹³C NMR signals are observed showing that DMF exchange with I (X = I) is fast on the NMR time scale. Me_3SiI also exchanges with I (X = I) as shown by the broadening, disappearance and reappearance of the Me₃Si signal at δ 10.8 ppm as the ratio of Me₃SiI/DMF is increased from 1/1 to 2/1. These observations are consistent with the kinetic data [1,2] and with the observation of halide/halide exchange catalysed by nucleophiles [3].

Finally, we examined the 29 Si NMR spectra of Me₃SiX solutions in CD₃CN to look for evidence of salt formation or increased coordination at silicon. The results are given in Table 3.

TABLE 3

²⁹Si NMR CHEMICAL SHIFTS OF Me₃ SiX IN CD₃ CN ^a

Me ₃ SIX	δ(²⁹ Si) (ppm)						
Me ₃ SiCl	31.0	(30.05)					
Me ₃ SiBr	28.7	(26.6)					
Me ₃ SiI	12.1	(10.3)					
Me ₃ SiOSO ₂ CF ₃	46.1	(44.3)					

^a Values in $CD_2 Cl_2$ in parentheses, ca. 0.5 *M* solutions, with internal TMS.

Although small high frequency shifts are observed in CD_3CN relative to CD_2Cl_2 these are not necessarily due to salt formation, and may be accounted for by increased Si-X bond polarisation (for example the ²⁹Si chemical shift of Me₃SiI is 8.29 ppm in the less polar CDCl₃). The only safe conclusion is that the major species in CD_3CN are the molecular Me_3SiX species, rather than salts, or species involving extended coordination at silicon.

In conclusion, we suggest that our data show that the Chojnowski mechanism [2] merits serious consideration, although the present results are uninformative about the role of weak nucleophiles such as CD_3CN .

We are continuing these studies with different silanes and nucleophiles, and also $R_3 SnX$ compounds where extracoordination is a serious possibility, even with labile stannanes.

Acknowledgments. We thank the Open University for support of T. Stout, and Gordon Howell for assistance with some of the NMR spectra.

TABLE 2

References

- 1 R.J.P. Corriu, G. Dabosi and M. Martineau, J. Organometal. Chem., 186 (1980) 25.
- 2 J. Chojnowski, M. Cypryk and J. Michaelski, J. Organometal, Chem., 161 (1978) C31.
- 3 B.G. McKinnie and F.K. Cartledge, J. Organometal. Chem. 104 (1976) 407.
- 4 F.K. Cartledge, B.G. McKinnie and J.M. Wolcott, J. Organometal. Chem., 118 (1976) 7.
- 5
- R.J.P. Corriu, G. Dabosi and M. Martineau, J. Organometal. Chem., 150 (1978) 27. R.J.P. Corriu, G. Dabosi and M. Martineau, J. Organometal. Chem., 154 (1978) 33. 6
- 7 E.A. Williams and J.D. Cargioli in Ann. Reports on NMR spectroscopy, Volume 9, Academic Press 1979, p. 221 and ref. therein.
- 8 C.H. Yoder, C.M. Ryan, G.F. Martin and P.S. Ho, J. Organometal. Chem., 190 (1980) 1.
- 9 W.F. Reynolds and R.A. McClelland, Chem, Commun., (1974) 824.